Crystal Structure of $\mathrm{Na}_{3} \mathrm{Sr}_{4} \mathrm{Al}_{5} \mathbf{F}_{\mathbf{2 6}}$

A. HEMON, A. LE BAIL, AND G. COURBION
Laboratoire des Fluorures (UA 449), Faculté des Sciences, Université du Maine, 72017 Le Mans Cedex, France

Received February 13, 1989; in revised form April 21, 1989

Abstract

$\mathrm{Na}_{3} \mathrm{Sr}_{4} \mathrm{Al}_{5} \mathrm{~F}_{26}$ is tetragonal (space group $P 4_{2} / n$) with $a=10.2679(5) \AA, c=18.373(2) \AA$, and $Z=4$. The structure is refined, despite a systematic twinning, from 1478 reflections to $R_{F}=0.029\left(R_{1}=0.039\right)$. Aluminum ions are in octahedral sites while strontium and sodium atoms are respectively in nine- and eightfold coordination. The structure is characterized by isolated $\left[\mathrm{Al}_{5} \mathrm{~F}_{26}\right]^{11-}$ pentamers. A distorted cube $\left[\mathrm{Na}_{(1)} \mathrm{F}_{8}\right]^{7-}$ ensures the connection between the octahedra pentamers and builds up $\left[\mathrm{NaAl}_{5} \mathrm{~F}_{26}\right]^{10-}$ chains running along the b-axis at level $z=0$ and along the a-axis at level $z=\frac{1}{2}$. Strontium ($\operatorname{Sr}_{(1)}$ and $\left.\mathrm{Sr}_{(2)}\right)$ and sodium $\left(\mathrm{Na}_{(2)}\right.$ and $\left.\mathrm{Na}_{(3)}\right)$ are inserted between the chains. 1989 Academic Press, Inc.

Introduction

The investigation of the ternary system $\mathrm{NaF}-\mathrm{SrF}_{2}-\mathrm{AlF}_{3}$ by means of the chloride flux method (1,2) has evidenced three new phases: two fluorides $\mathrm{NaSrAlF}_{6}$ (3) on $\mathrm{Na}_{3} \mathrm{Sr}_{4} \mathrm{Al}_{5} \mathrm{~F}_{26}$ and a chlorofluoride $\mathrm{Sr}_{10} \mathrm{Al}_{2}$ $\mathrm{F}_{25} \mathrm{Cl}$ (4). We present here the crystal structure of $\mathrm{Na}_{3} \mathrm{Sr}_{4} \mathrm{Al}_{5} \mathrm{~F}_{26}$ from single-crystal data.

Preparation

Crystals of $\mathrm{Na}_{3} \mathrm{Sr}_{4} \mathrm{Al}_{5} \mathrm{~F}_{26}$ were synthesized using a chloride flux method in a platinum crucible under argon atmosphere. They are obtained from the mixture $\mathrm{NaF}+$ $2 \mathrm{SrF}_{2}+2 \mathrm{AlF}_{3}+4.5 \mathrm{NaCl}+2.75 \mathrm{ZnCl}_{2}$ by slow cooling $\left(6^{\circ} \mathrm{C} / \mathrm{hr}\right)$ from $700^{\circ} \mathrm{C}$. $\mathrm{Na}_{3} \mathrm{Sr}_{4} \mathrm{Al}_{5} \mathrm{~F}_{26}$ crystals, with a stretched octahedron or plate habit ($<1 \mathrm{~mm}^{3}$), are obtained with a small amount of two other phases: $\mathrm{NaSrAlF}_{6}$ (3) and an unknown compound whose diffraction pattern is very
close to that of Jarlitc- $\mathrm{Na}_{4} \mathrm{Sr}_{12} \mathrm{Mg}_{2}$ $\mathrm{Al}_{12} \mathrm{~F}_{64}(\mathrm{OH})_{4}(5)$.

The solid-state synthesis of $\mathrm{Na}_{3} \mathrm{Sr}_{4} \mathrm{Al}_{5} \mathrm{~F}_{26}$ has been achieved, in sealed gold tubes, at $650^{\circ} \mathrm{C}(40 \mathrm{hr})$ from a stoichiometric mixture of elementary fluorides.

Structural Determination of $\mathbf{N a}_{3} \mathbf{S r}_{\mathbf{4}} \mathbf{A l}_{\mathbf{5}} \mathbf{F}_{\mathbf{2 6}}$

The crystal selected for X-ray data collection on a Siemens AED2 four-circle diffractometer has an approximaie volume of $1.75 \times 10^{-3} \mathrm{~mm}^{3}$ and is limited by faces (100, 010, 001). The lattice parameters-a $=10.2679(5) \AA, c=18.373(2) \AA$-were геfined from 40 reflections by a double-scan technique. The conditions of the diffraction experiment are summarized in Table I.

The observed reflection conditions$h k 0, h+k=2 n$, and $00 l, l=2 n$-lead to the space group $P 4_{2} / n$. Intensities, corrected from Lorentz-polarization effects as well as for absorption using the correct

TABLE I
Crystal Data and Conditions of Data Collection and Refinement for $\mathrm{Na}_{3} \mathrm{Sr}_{4} \mathrm{Al}_{5} \mathrm{~F}_{26}$

Symmetry	Tetragonal		
Space group	$P 4_{2} / n$ (No. 86)		
Cell parameters	$\begin{aligned} & a=10.2679(5) \AA \\ & c=18.373(2) \AA ; \\ & V=1937.06 \AA^{3} ; Z=4 \end{aligned}$		
$\begin{aligned} & \text { Crystal volume }\left(10^{-3}\right. \\ & \left.\mathrm{mm}^{3}\right) \end{aligned}$	1.75		
Radiation	Mo $K \alpha$ (graphite monochromatized)		
Scanning mode	$\omega / 2 \theta$		
Aperture (mm)	3/3		
Range registered			
$\theta_{\text {min }}, \theta_{\text {max }}\left({ }^{\circ}\right.$)	2.00, 30.00		
h, k, l max	14, 10, 25		
Absorption cocfficient μ (cm^{-1})	111.54		
Absorption correction	Gaussian method		
Transmission factors	$\begin{aligned} & \max : 0.4339 \\ & \min : 0.2417 \end{aligned}$		
Reflections measured: Total	6359		
Independent ($R_{\text {average }}$)	$\begin{aligned} & 2764,(R=0.024) \text { in } 4 / \mathrm{m} \\ & 1696,(R=0.026) \text { in } \\ & 4 / \mathrm{mmm} \end{aligned}$		
Used in refinement	$\begin{aligned} & 2409\left(F_{\mathrm{o}}>6 \sigma\left(F_{\mathrm{o}}\right)\right) \text { in } \\ & 4 / m \\ & 1478\left(F_{\mathrm{o}}>6 \sigma\left(F_{\mathrm{o}}\right)\right) \text { in } \\ & 4 / m m m \end{aligned}$		
Number of refined parameters	75 (with isotropic thermal parameters) 176 (with anisotropic thermal parameters)		
Reliability factor	$\begin{gathered} R_{\mathrm{F}}=\left(\sum\left\\|F_{\mathrm{o}}\|-k\| F_{\mathrm{c}}\right\\| f\right. \\ \left.\sum\left\|F_{\mathrm{o}}\right\|\right) \\ R_{\mathrm{I}}=\left(\sum\left\|I_{\mathrm{o}}-k I_{\mathrm{c}}\right\| / \Sigma I_{\mathrm{o}}\right) \end{gathered}$		

final composition, were averaged in Laue group $4 / \mathrm{m}$ and led to an $R_{\text {av }}$ value of 0.024 .

In the first trial, the structure refinement was performed using the SHELX76 program (6). Ionic scattering factors and anomalous dispersion parameters were taken from ' International Tables for X-Ray Crystallography" (7). The structure was solved from the TANG option of direct methods in the space group $P 4_{2} / n$. Two strontium sites (8 g) and one aluminum site (4c) were first located; this led to a reliabil-
ity factor $R_{\mathrm{F}}=0.42$. From successive difference Fourier maps and refinements, the other atoms were easily located but the final R_{F} value decreased only to 0.21 with isotropic thermal motion. At this stage of refinement the structural formulation obtained was $\mathrm{Na}_{3} \mathrm{Sr}_{4} \mathrm{Al}_{5} \mathrm{~F}_{26}$ and no new peaks were observed in the difference Fourier map. Moreover all the $\mathrm{Al}-\mathrm{F}, \mathrm{Na}-\mathrm{F}$, and $\mathrm{Sr}-\mathrm{F}$ distances are realistic. The failure of the structure refinement compelled us to assume a twinning process, involving an increase of the Laue symmetry.

Indeed, when looking at the structure factors for pairs of reflections $h k 0 / k h 0$ and $h k l / k h l$, it appears that the observed F_{o} obey the Laue symmetry $4 / \mathrm{mmm}$ instead of $4 / m$. Thus, if the space group $P 4_{2} / n$ is the correct one, there is only one solution to this problem: two domains, with a volume ratio near unity, which superpose their $h k l$ and $k h l$ reflections.

A structure refinement with the only reflections unaffected by the twinning ($h h l$ and $h 0 l$) and isotropic temperature factors converges to $R_{\mathrm{F}}=0.06$ ($406 \mathrm{hkl}, 75$ refined parameters). This confirms the suggested twin model for our crystal.

In order to solve the structure with a twinned crystal (a limited data collection of two other crystals shows the same twinning) the observed intensities were merged in the $4 / \mathrm{mmm}$ Laue group ($R_{\mathrm{av}}=0.026$ for $1696 \mathrm{hkl})$. Each observed intensity (I_{o}) was considered to result from two domains (A and B) with equal volume according to the expression $I_{0}=I_{h k l \mathrm{~A}}+I_{k h i \mathrm{~B}}$. For calculation we have used a local program (unpublished) where the minimized function was $\chi^{2}=$ $\sum w_{i}\left(I_{\mathrm{o}}-k I_{\mathrm{c}}\right)^{2}$ with $I_{\mathrm{c}}=F_{h k l \mathrm{~A}}^{2}+F_{k h / \mathrm{B}}^{2}, w_{i}=$ $1 / I_{0}$ (ponderation scheme) and $k=$ scale factor. Starting from the atomic positions previously obtained, and refining with isotropic temperature factors, the reliability factor fell to $R_{\mathrm{F}}=0.054\left(R_{\mathrm{I}}=0.069\right)$ and further to $R_{\mathrm{F}}=0.029\left(R_{\mathrm{I}}=0.039\right)$ when applying anisotropic thermal motion. This

TABLE II
Atomic Parameters, Anisotropic Temperature Factors ${ }^{a} U_{i j} \times 10^{4}$ and $B_{\text {eq }}\left(\AA^{2}\right)$ For $\mathrm{Na}_{3} \mathrm{Sr}_{4} \mathrm{Al}_{5} \mathrm{~F}_{26}$

Atom	Site	x	y	z	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}	B_{eq}
Sr_{1}	8 g	$0.2821(0)$	$0.9974(1)$	$0.8254(0)$	$59(0)$	$75(0)$	$152(0)$	$-8(0)$	$-14(0)$	$-14(0)$	0.75
Sr_{2}	8 g	$0.2873(0)$	$0.9970(1)$	$0.1944(0)$	$66(0)$	$72(0)$	$84(0)$	$-12(0)$	$16(0)$	$-9(0)$	0.58
Al_{1}	4 c	0	0	0	$112(11)$	$48(11)$	$77(0)$	$-112(21)$	$9(9)$	$-3(9)$	0.62
Al_{2}	8 g	$0.5155(2)$	$0.7555(2)$	$0.8727(1)$	$5(11)$	$64(5)$	$65(0)$	$-4(5)$	$18(9)$	$1(9)$	0.35
Al_{3}	8 g	$0.2523(2)$	$0.5098(3)$	$0.6339(1)$	$48(5)$	$101(11)$	$73(0)$	$0(5)$	$4(9)$	$19(9)$	0.59
Na_{1}	4 d	0	0	$\frac{1}{2}$	$181(21)$	$438(27)$	$188(17)$	$-107(48)$	$29(19)$	$-124(19)$	2.12
Na_{2}	4 f	$\frac{1}{4}$	$\frac{1}{4}$	$0.9978(0)$	$192(43)$	$389(48)$	$68(17)$	$262(32)$	0	0	1.71
Na_{3}	4 e	3	4	$0.9959(3)$	$25(48)$	$763(80)$	$154(34)$	$-171(48)$	0	0	3.07
$\mathrm{~F}_{1}$	8 g	$0.1266(4)$	$0.0093(6)$	$0.7056(2)$	$117(16)$	$139(21)$	$120(17)$	$11(21)$	$38(9)$	$3(19)$	0.99
$\mathrm{~F}_{2}$	8 g	$0.3361(6)$	$0.1192(6)$	$0.6710(3)$	$160(27)$	$246(32)$	$291(34)$	$-91(21)$	$0(29)$	$-86(29)$	1.83
$\mathrm{~F}_{3}$	8 g	$0.6673(6)$	$0.1132(5)$	$0.6720(3)$	$165(27)$	$133(27)$	$171(17)$	$59(21)$	$1(19)$	$-9(19)$	1.24
$\mathrm{~F}_{4}$	8 g	$0.3232(5)$	$0.8760(6)$	$0.6947(3)$	$192(27)$	$165(27)$	$137(17)$	$80(21)$	$-57(19)$	$29(19)$	1.30
$\mathrm{~F}_{5}$	8 g	$0.4513(5)$	$0.3695(5)$	$0.0602(3)$	$176(27)$	$149(21)$	$188(17)$	$-37(21)$	$-9(19)$	$96(19)$	1.35
$\mathrm{~F}_{6}$	8 g	$0.1392(5)$	$0.3560(5)$	$0.0879(2)$	$139(27)$	$128(27)$	$103(17)$	$-59(16)$	$9(19)$	$3(19)$	0.97
$\mathrm{~F}_{7}$	8 g	$0.3630(5)$	$0.8513(5)$	$0.0943(2)$	$149(27)$	$117(27)$	$120(17)$	$37(16)$	$-57(19)$	$-38(19)$	1.02
$\mathrm{~F}_{8}$	8 g	$0.5031(6)$	$0.1226(4)$	$0.1975(2)$	$117(21)$	$80(16)$	$120(17)$	$37(21)$	$-7(19)$	$38(9)$	0.83
$\mathrm{~F}_{9}$	8 g	$0.1574(4)$	$0.9958(6)$	$0.9636(2)$	$112(16)$	$203(21)$	$171(17)$	$11(21)$	$29(19)$	$2(19)$	1.28
$\mathrm{~F}_{10}$	8 g	$0.3951(5)$	$0.8402(5)$	$0.9255(3)$	$80(27)$	$171(27)$	$154(17)$	$11(21)$	$57(19)$	$-9(19)$	1.06
$\mathrm{~F}_{11}$	8 g	$0.3742(5)$	$0.9537(6)$	$0.5661(3)$	$128(21)$	$208(27)$	$171(17)$	$5(16)$	$95(19)$	$-9(19)$	1.33
$\mathrm{~F}_{12}$	8 g	$0.3429(5)$	$0.3968(6)$	$0.5786(2)$	$149(27)$	$181(27)$	$137(17)$	$59(21)$	$29(19)$	$-38(19)$	1.23
$\mathrm{~F}_{13}$	8 g	$0.3728(6)$	$0.3242(5)$	$0.1872(2)$	$155(27)$	$160(27)$	$137(17)$	$80(21)$	$-7(19)$	$-38(19)$	1.19

Note. Numbers in parentheses indicate esd's.
${ }^{a}$ The vibrational coefficients relate to the expression: $T=\exp \left[-2 \pi^{2}\left(h^{2} a^{* 2} U_{11}+k^{2} b^{* 2} U_{22}+l^{2} c^{* 2} U_{33}+\right.\right.$ $\left.\left.2 h k a^{*} b^{*} U_{12}+2 h l a^{*} c^{*} U_{13}+2 k l b^{*} c^{*} U_{23}\right)\right]$.
result, obtained without any major deviation for the atomic coordinates, well confirms the twinning of our crystal. Table II lists the positional and thermal motion parameters and Table III gives the main interatomic distances and angles. A table of I_{0} and I_{c} can be obtained on request to the authors.

Structure Description

The main feature of the $\mathrm{Na}_{3} \mathrm{Sr}_{4} \mathrm{Al}_{5} \mathrm{~F}_{26}$ structure corresponds to the existence of isolated pentamers $\left[\mathrm{Al}_{5} \mathrm{~F}_{26}\right]^{11-}$ built up from five aluminum octahedra. In these pentamers (Fig. 1) the central $\mathrm{Al}_{(1)}$ octahedron is corner-connected to four other octahedra in such a way that the $\mathrm{Al}_{(2)}$ octahedra (and also $\mathrm{Al}_{(3)}$) are always in trans-position. These entities are parallel to the (b, c) plane
at level $z=0$ and are rotated by 90° around the c-axis at level $z=\frac{1}{2}$ (Fig. 2).

The sodium and strontium atoms are respectively in eight- and ninefold coordination. The $\mathrm{NaF}_{8}\left(\mathrm{Na}_{1}\right)$ polyhedron, which looks like a distorted cube, is also shown in Fig. 1. These polyhedra establish the connection between the $\left[\mathrm{Al}_{5} \mathrm{~F}_{26}\right]^{11-}$ blocks and build up $\left[\mathrm{NaAl}_{5} \mathrm{~F}_{26}\right]^{10-}$ chains running either along the b-axis at level $z=0$ (Fig. 3) or along the a-axis at level $z=\frac{1}{2}$ (Fig. 4). The

Fig. 1. Perspective view of $\left[\mathrm{Al}_{5} \mathrm{~F}_{26}\right]^{11-}$ pentamers and $\left[\mathrm{Na}_{(1)} \mathrm{F}_{8}\right]^{7-}$ polyhedra.

TABLE III
Main Interatomic Distances (\AA) and Angles $\left({ }^{\circ}\right)$ in $\operatorname{NaSr}_{4} \mathrm{Al}_{5} \mathrm{~F}_{26}{ }^{a}$

$$
\begin{aligned}
& \mathrm{Sr}_{1}^{2+} \text { polyhedron [9] } \\
& \mathrm{Sr}_{1}-\mathrm{F}_{2}=2.393(6) \\
& \mathrm{Sr}_{1}-\mathrm{F}_{3}=2.422(6) \\
& \mathrm{Sr}_{1}-\mathrm{F}_{8}=2.561(5) \\
& \mathrm{Sr}_{1}-\mathrm{F}_{1}=2.583(4) \\
& \mathrm{Sr}_{1}-\mathrm{F}_{12}=2.681(5) \\
& \mathrm{Sr}_{1}-\mathrm{F}_{10}=2.709(5) \\
& \mathrm{Sr}_{1}-\mathrm{F}_{1}=2.722(3) \\
& \mathrm{Sr}_{1}-\mathrm{F}_{4}=2.737(5) \\
& \mathrm{Sr}_{1}-\mathrm{F}_{9}=2.844(3) \\
&\left\langle\mathrm{Sr}_{1}-\mathrm{F}\right\rangle=2.628
\end{aligned}
$$

Sr_{2}^{2+} polyhedron [9]
$\mathrm{Sr}_{2}-\mathrm{F}_{4}=2.449(6)$
$\mathrm{Sr}_{2}-\mathrm{F}_{13}=2.468(6)$
$\mathrm{Sr}_{2}-\mathrm{F}_{7}=2.494(2)$
$\mathrm{Sr}_{2}-\mathrm{F}_{8}=2.565(5)$
$\mathrm{Sr}_{2}-\mathrm{F}_{13}=2.582(2)$
$\mathrm{Sr}_{2}-\mathrm{F}_{6}=2.584(8)$
$\mathrm{Sr}_{2}-\mathrm{F}_{8}=2.609(5)$
$\mathrm{Sr}_{2}-\mathrm{F}_{1}=2.618(5)$
$\mathrm{Sr}_{2}-\mathrm{F}_{3}=2.743(9)$
$\left\langle\mathrm{Sr}_{2}-\mathrm{F}\right\rangle=2.568$
Al_{1}^{3+} octahedron

$\mathrm{Al}_{1}-\mathrm{F}_{9}{ }^{*}=2 \times 1.749(4)$	$\mathrm{F}_{9}-\mathrm{Al}_{1}-\mathrm{F}_{5}=2 \times$	90.2(4)	$\mathrm{F}_{9}-\mathrm{F}_{5}=2.520(6)$
$\mathrm{Al}_{1}-\mathrm{F}_{5}=2 \times 1.808(6)$	$\mathrm{F}_{9}-\mathrm{Al}_{1}-\mathrm{F}_{5}=2 \times$	89.8(4)	$\mathrm{F}_{9}-\mathrm{F}_{5}=2.512(6)$
$\mathrm{Al}_{1}-\mathrm{F}_{\mathrm{I}}=2 \times 1.836(3)$	$\mathrm{F}_{9}-\mathrm{Al}_{1}-\mathrm{F}_{11}=2 \times$	90.2(4)	$\mathrm{F}_{9}-\mathrm{F}_{11}=2.540(6)$
$\left\langle\mathrm{Al}_{1}-\mathrm{F}\right\rangle=1.798$	$\mathrm{F}_{9}-\mathrm{Al}_{1}-\mathrm{F}_{11}-2 \times$	89.8(4)	$\mathrm{F}_{9}-\mathrm{F}_{11}=2.531(6)$
	$\mathrm{F}_{5}-\mathrm{Al}_{1}-\mathrm{F}_{11}=2 \times$	87.4(5)	$\mathrm{F}_{5}-\mathrm{F}_{11}=2.518(7)$
	$\mathrm{F}_{5}-\mathrm{Al}_{1}-\mathrm{F}_{11}=2 \times$	92.6(5)	$\mathrm{F}_{5}-\mathrm{F}_{11}=2.634(7)$
	$\mathrm{Al}_{1}-\mathrm{F}_{5}-\mathrm{Al}_{2}=$	152.8(1)	
	$A l_{1}-\mathrm{F}_{31}-\mathrm{Al}_{3}=$	153.2(3)	

Al_{2}^{3+} octahedron
$\mathrm{Al}_{2}-\mathrm{F}_{13}{ }^{*}=1.788(4)$
$\mathrm{Al}_{2}-\mathrm{F}_{6}{ }^{*}=1.789(4)$
$\mathrm{Al}_{2}-\mathrm{F}_{10}{ }^{*}=1.796(4)$
$\mathrm{Al}_{2}-\mathrm{F}_{3}{ }^{*}=1.801(4)$
$\mathrm{Al}_{2}-\mathrm{F}_{8}{ }^{*}=1.807(8)$
$\mathrm{Al}_{2}-\mathrm{F}_{5}=1.812(10)$
$\left\langle\mathrm{Al}_{2}-\mathrm{F}\right\rangle=1.799$
Al_{3}^{3+} octahedron $\mathrm{Al}_{3}-\mathrm{F}_{2}{ }^{*}=1.744(10)$
$\mathrm{Al}_{3}-\mathrm{F}_{4}{ }^{*}=1.796(2)$
$\mathrm{Al}_{3}-\mathrm{F}_{12}{ }^{*}=1.801(3)$
$\mathrm{Al}_{3}-\mathrm{F}_{7}{ }^{*}=1.808(8)$
$\mathrm{Al}_{3}-\mathrm{F}_{1}{ }^{*}=1.822(6)$
$\mathrm{Al}_{3}-\mathrm{F}_{11}=1.838(7)$
$\left\langle\mathrm{Al}_{3}-\mathrm{F}\right\rangle=1.802$

TABIE III-Continued

" Estimated standard deviations are given in parentheses.

* Terminal fluorine.
other sodium atoms $\left(\mathrm{Na}_{(2)}\right.$ and $\left.\mathrm{Na}_{(3)}\right)$ are inserted between two parallel chains either at level $z \simeq 0$ (Fig. 3) or at level $z \simeq \frac{1}{2}$ whereas

Fig. 2. (100) projection of the $\mathrm{Na}_{3} \mathrm{Sr}_{4} \mathrm{Al}_{5} \mathrm{~F}_{26}$ structure drawn by means of the STRUPLO program (8). Shaded $\mathrm{Al}_{5} \mathrm{~F}_{26}$ pentamers are those centered at $x=0$; unshaded ones are centered at $x=\frac{1}{2} . \mathrm{Na}$ and S_{r} are represented by small and large circles, respectively ($\mathrm{Na}_{(1)}$ black small circles).
the strontium atoms $\left(\mathrm{Sr}_{(1)}\right.$ and $\left.\mathrm{Sr}_{(2)}\right)$ are located between the 90° rotated chains (see Fig. 2).

One possible explanation of the easy twinning observed for this compound is il-

Fig. 3. (001) projection of the $\mathrm{Na}_{3} \mathrm{Sr}_{4} \mathrm{Al}_{5} \mathrm{~F}_{26}$ structure with $-0.25<z<0.25$. Two $\mathrm{Na}_{(2)}$ and $\mathrm{Na}_{(3)}$ polyhedra are drawn. Na and Sr symbols are defined in Fig. 2.

Fig. 4. (001) projection of the $\mathrm{Na}_{3} \mathrm{Sr}_{4} \mathrm{Al}_{5} \mathrm{~F}_{26}$ structure with $0.25<z<0.75$. Symbols as in Fig. 2.
lustrated in Fig. 5. Two crystals can share a common plane perpendicular to the c-axis in which the $\mathrm{Al}_{5} \mathrm{~F}_{26}$ blocks at $z=0$ from a domain A become the $\mathrm{Al}_{5} \mathrm{~F}_{26}$ blocks at $z=\frac{1}{2}$ from a domain B. Such a twinning only involves small shifts of atoms ($0.14 \AA$ between $\mathrm{Al}_{(2)}$ and $\mathrm{Al}_{(3)}, 0.12 \AA$ between $\mathrm{Na}_{(2)}$ and $\mathrm{Na}_{(3)}$).

The mean Al-F observed distances (1.80

Fig. 5. View of a possible twinning between two crystals A and B. Symbols as in Fig. 2. Shaded $\mathrm{Al}_{5} \mathrm{~F}_{26}$ blocks are centered at $x=0(\mathrm{~A})$ and $y=0(\mathrm{~B})$; unshaded ones are centered at $x=\frac{1}{2}$ (A) and $y=\frac{1}{2}(B)$.
\AA) for the three octahedra are in good agreement and close to the sum of Shannon's radii (9) ($1.82 \AA$); the smaller $\mathrm{Al}-\mathrm{F}$ bonds always correspond to terminal fluorines (see Table III).

To our knowledge, the $\left[\mathrm{Al}_{5} \mathrm{~F}_{26}\right]^{11-}$ pentamer has not been encountered in fluoaluminates. However the corner connection mode between the central octahedron and the four others, rotated by 90° (see Fig. 1), is observed in the $\left[\mathrm{Al}_{3} \mathrm{~F}_{14}\right]^{5-}$ layers of the Chiolite structure $\mathrm{Na}_{5} \mathrm{Al}_{3} \mathrm{~F}_{14}(10,11)$. Indeed, in $\mathrm{Na}_{3} \mathrm{Sr}_{4} \mathrm{Al}_{5} \mathrm{~F}_{26}$ there exists isolated octahedra pentamers $\left[\mathrm{Al}_{5} \mathrm{~F}_{26}\right]=\mathrm{AlF}_{4}$ $\left[\mathrm{Al}_{4} \mathrm{~F}_{22}\right]$ where AlF_{4} is the central octahedron and in $\mathrm{Na}_{5} \mathrm{Al}_{3} \mathrm{~F}_{14}$ these octahedra pentamers undergo a condensation by sharing the external octahedra, resulting in a layer $\mathrm{AlF}_{4}\left[\mathrm{Al}_{2} \mathrm{~F}_{10}\right]=\mathrm{Al}_{3} \mathrm{~F}_{14}$. A study of the homologous compounds with $M^{\mathrm{II}}=3 d$ transition metal is in progress.

Acknowledgment

The authors are grateful to Dr. M. Leblanc for his help in X -ray data collection.

References

1. J. Nouet, C. Jacoboni, G. Ferey, J. Y. Gerard, and R. De Pape, J. Cryst. Growth 8, 94 (1971).
2. G. Courbion, Thesis, Le Mans (1979).
3. A. Hemon, A. Le Bail, and G. Courbion, to be published.
4. A. Hemon and G. Courbion, J. Solid State Chem. 81, 293 (1989).
5. F. C. Hawthorne, Canad. Mineral. 21, 553 (1983).
6. G. Sheldrick, 'SHELX76: A Program for Crystal Structure Determination," University of Cambridge (1976).
7. "International Tables for X-Ray Crystallography,'" Vol. IV, Kynoch Press, Birmingham (1968).
8. R. X. Fisher, J. Appl. Crystallogr. 18, 258 (1985).
9. R. D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976).
10. C. Brosset, Z. Anorg. Allg. Chem. 238, 201 (1938).
11. C. Jacoboni, A. Leble, and J. J. Rousseau, J. Solid State Chem. 36, 297-304 (1981).
